转帖|使用教程|编辑:我只采一朵|2016-03-17 10:49:04.000|阅读 695 次
概述:毫无疑问,Java 8是Java自Java 5(发布于2004年)之后的最重要的版本。这个版本包含语言、编译器、库、工具和JVM等方面的十多个新特性。在本文中我们将学习这些新特性,并用实际的例子说明在什么场景下适合使用。本文翻译自Java 8 Features Tutorial – The ULTIMATE Guide。
# 慧都年终大促·界面/图表报表/文档/IDE等千款热门软控件火热促销中 >>
相关链接:
前言: Java 8 已经发布很久了,很多报道表明Java 8 是一次重大的版本升级。在Java Code Geeks上已经有很多介绍Java 8新特性的文章,例如、和。本文还参考了一些其他资料,例如:和。本文综合了上述资料,整理成一份关于Java 8新特性的参考教材,希望你有所收获。
毫无疑问,Java 8是Java自Java 5(发布于2004年)之后的最重要的版本。这个版本包含语言、编译器、库、工具和JVM等方面的十多个新特性。在本文中我们将学习这些新特性,并用实际的例子说明在什么场景下适合使用。
这个教程包含Java开发者经常面对的几类问题:
Java 8是Java的一个重大版本,有人认为,虽然这些新特性领Java开发人员十分期待,但同时也需要花不少精力去学习。在这一小节中,我们将介绍Java 8的大部分新特性。
Lambda表达式(也称为) 是Java 8中最大和最令人期待的语言改变。它允许我们将函数当成参数传递给某个方法,或者把代码本身当作数据处理:函数式开发者非常熟悉这些概念。很多JVM平台 上的语言(Groovy、Scala等)从诞生之日就支持Lambda表达式,但是Java开发者没有选择,只能使用匿名内部类代替Lambda表达式。
Lambda的设计耗费了很多时间和很大的社区力量,最终找到一种折中的实现方案,可以实现简洁而紧凑的语言结构。最简单的Lambda表达式可由逗号分隔的参数列表、->符号和语句块组成,例如:
Arrays.asList( "a", "b", "d" ).forEach( e -> System.out.println( e ) );
在上面这个代码中的参数e的类型是由编译器推理得出的,你也可以显式指定该参数的类型,例如:
Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.println( e ) );
如果Lambda表达式需要更复杂的语句块,则可以使用花括号将该语句块括起来,类似于Java中的函数体,例如:
Arrays.asList( "a", "b", "d" ).forEach( e -> { System.out.print( e ); System.out.print( e ); } );
Lambda表达式可以引用类成员和局部变量(会将这些变量隐式得转换成final的),例如下列两个代码块的效果完全相同:
String separator = ","; Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.print( e + separator ) );
和
final String separator = ","; Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.print( e + separator ) );
Lambda表达式有返回值,返回值的类型也由编译器推理得出。如果Lambda表达式中的语句块只有一行,则可以不用使用return语句,下列两个代码片段效果相同:
Arrays.asList( "a", "b", "d" ).sort( ( e1, e2 ) -> e1.compareTo( e2 ) );
和
Arrays.asList( "a", "b", "d" ).sort( ( e1, e2 ) -> { int result = e1.compareTo( e2 ); return result; } );
Lambda的设计者们为了让现有的功能与Lambda表达式良好兼容,考虑了很多方法,于是产生了这个概念。函数接口指的是只有一个函数的接口,这样的接口可以隐式转换为Lambda表达式。java.lang.Runnable和java.util.concurrent.Callable是函数式接口的最佳例子。在实践中,函数式接口非常脆弱:只要某个开发者在该接口中添加一个函数,则该接口就不再是函数式接口进而导致编译失败。为了克服这种代码层面的脆弱性,并显式说明某个接口是函数式接口,Java 8 提供了一个特殊的注解@FunctionalInterface(Java 库中的所有相关接口都已经带有这个注解了),举个简单的函数式接口的定义:
@FunctionalInterface public interface Functional { void method(); }
不过有一点需要注意,不会破坏函数式接口的定义,因此如下的代码是合法的。
@FunctionalInterface public interface FunctionalDefaultMethods { void method(); default void defaultMethod() { } }
Lambda表达式作为Java 8的最大卖点,它有潜力吸引更多的开发者加入到JVM平台,并在纯Java编程中使用函数式编程的概念。如果你需要了解更多Lambda表达式的细节,可以参考。
Java 8使用两个新概念扩展了接口的含义:默认方法和静态方法。使得接口有点类似traits,不过要实现的目标不一样。默认方法使得开发者可以在 不破坏二进制兼容性的前提下,往现存接口中添加新的方法,即不强制那些实现了该接口的类也同时实现这个新加的方法。
默认方法和抽象方法之间的区别在于抽象方法需要实现,而默认方法不需要。接口提供的默认方法会被接口的实现类继承或者覆写,例子代码如下:
private interface Defaulable { // Interfaces now allow default methods, the implementer may or // may not implement (override) them. default String notRequired() { return "Default implementation"; } } private static class DefaultableImpl implements Defaulable { } private static class OverridableImpl implements Defaulable { @Override public String notRequired() { return "Overridden implementation"; } }
Defaulable接口使用关键字default定义了一个默认方法notRequired()。DefaultableImpl类实现了这个接口,同时默认继承了这个接口中的默认方法;OverridableImpl类也实现了这个接口,但覆写了该接口的默认方法,并提供了一个不同的实现。
Java 8带来的另一个有趣的特性是在接口中可以定义静态方法,例子代码如下:
private interface DefaulableFactory { // Interfaces now allow static methods static Defaulable create( Supplier< Defaulable > supplier ) { return supplier.get(); } }
下面的代码片段整合了默认方法和静态方法的使用场景:
public static void main( String[] args ) { Defaulable defaulable = DefaulableFactory.create( DefaultableImpl::new ); System.out.println( defaulable.notRequired() ); defaulable = DefaulableFactory.create( OverridableImpl::new ); System.out.println( defaulable.notRequired() ); }
这段代码的输出结果如下:
Default implementation Overridden implementation
由于JVM上的默认方法的实现在字节码层面提供了支持,因此效率非常高。默认方法允许在不打破现有继承体系的基础上改进接口。该特性在官方库中的应用是:给java.util.Collection接口添加新方法,如stream()、parallelStream()、forEach()和removeIf()等等。
尽管默认方法有这么多好处,但在实际开发中应该谨慎使用:在复杂的继承体系中,默认方法可能引起歧义和编译错误。如果你想了解更多细节,可以参考。
方法引用使得开发者可以直接引用现存的方法、Java类的构造方法或者实例对象。方法引用和Lambda表达式配合使用,使得java类的构造方法看起来紧凑而简洁,没有很多复杂的模板代码。
西门的例子中,Car类是不同方法引用的例子,可以帮助读者区分四种类型的方法引用。
public static class Car { public static Car create( final Supplier< Car > supplier ) { return supplier.get(); } public static void collide( final Car car ) { System.out.println( "Collided " + car.toString() ); } public void follow( final Car another ) { System.out.println( "Following the " + another.toString() ); } public void repair() { System.out.println( "Repaired " + this.toString() ); } }
第一种方法引用的类型是构造器引用,语法是Class::new,或者更一般的形式:Class<T>::new。注意:这个构造器没有参数。
final Car car = Car.create( Car::new ); final List< Car > cars = Arrays.asList( car );
第二种方法引用的类型是静态方法引用,语法是Class::static_method。注意:这个方法接受一个Car类型的参数。
cars.forEach( Car::collide );
第三种方法引用的类型是某个类的成员方法的引用,语法是Class::method,注意,这个方法没有定义入参:
cars.forEach( Car::repair );
第四种方法引用的类型是某个实例对象的成员方法的引用,语法是instance::method。注意:这个方法接受一个Car类型的参数:
final Car police = Car.create( Car::new ); cars.forEach( police::follow );
运行上述例子,可以在控制台看到如下输出(Car实例可能不同):
Collided com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d Repaired com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d Following the com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d
如果想了解和学习更详细的内容,可以参考
自从Java 5中引入以来,这个特性开始变得非常流行,并在各个框架和项目中被广泛使用。不过,注解有一个很大的限制是:在同一个地方不能多次使用同一个注解。Java 8打破了这个限制,引入了重复注解的概念,允许在同一个地方多次使用同一个注解。
在Java 8中使用@Repeatable注解定义重复注解,实际上,这并不是语言层面的改进,而是编译器做的一个trick,底层的技术仍然相同。可以利用下面的代码说明:
package com.javacodegeeks.java8.repeatable.annotations; import java.lang.annotation.ElementType; import java.lang.annotation.Repeatable; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; public class RepeatingAnnotations { @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) public @interface Filters { Filter[] value(); } @Target( ElementType.TYPE ) @Retention( RetentionPolicy.RUNTIME ) @Repeatable( Filters.class ) public @interface Filter { String value(); }; @Filter( "filter1" ) @Filter( "filter2" ) public interface Filterable { } public static void main(String[] args) { for( Filter filter: Filterable.class.getAnnotationsByType( Filter.class ) ) { System.out.println( filter.value() ); } } }
正如我们所见,这里的Filter类使用@Repeatable(Filters.class)注解修饰,而Filters是存放Filter注解的容器,编译器尽量对开发者屏蔽这些细节。这样,Filterable接口可以用两个Filter注解注释(这里并没有提到任何关于Filters的信息)。
另外,反射API提供了一个新的方法:getAnnotationsByType(),可以返回某个类型的重复注解,例如Filterable.class.getAnnoation(Filters.class)将返回两个Filter实例,输出到控制台的内容如下所示:
filter1 filter2
如果你希望了解更多内容,可以参考。
Java 8编译器在类型推断方面有很大的提升,在很多场景下编译器可以推导出某个参数的数据类型,从而使得代码更为简洁。例子代码如下:
package com.javacodegeeks.java8.type.inference; public class Value< T > { public static< T > T defaultValue() { return null; } public T getOrDefault( T value, T defaultValue ) { return ( value != null ) ? value : defaultValue; } }
下列代码是Value<String>类型的应用:
package com.javacodegeeks.java8.type.inference; public class TypeInference { public static void main(String[] args) { final Value< String > value = new Value<>(); value.getOrDefault( "22", Value.defaultValue() ); } }
参数Value.defaultValue()的类型由编译器推导得出,不需要显式指明。在Java 7中这段代码会有编译错误,除非使用Value.<String>defaultValue()。
Java 8拓宽了注解的应用场景。现在,注解几乎可以使用在任何元素上:局部变量、接口类型、超类和接口实现类,甚至可以用在函数的异常定义上。下面是一些例子:
package com.javacodegeeks.java8.annotations; import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target; import java.util.ArrayList; import java.util.Collection; public class Annotations { @Retention( RetentionPolicy.RUNTIME ) @Target( { ElementType.TYPE_USE, ElementType.TYPE_PARAMETER } ) public @interface NonEmpty { } public static class Holder< @NonEmpty T > extends @NonEmpty Object { public void method() throws @NonEmpty Exception { } } @SuppressWarnings( "unused" ) public static void main(String[] args) { final Holder< String > holder = new @NonEmpty Holder< String >(); @NonEmpty Collection< @NonEmpty String > strings = new ArrayList<>(); } }
ElementType.TYPE_USER和ElementType.TYPE_PARAMETER是Java 8新增的两个注解,用于描述注解的使用场景。Java 语言也做了对应的改变,以识别这些新增的注解。
为了在运行时获得Java程序中方法的参数名称,老一辈的Java必须使用不同方法,例如。Java 8终于将这个特性规范化,在语言层面(使用反射API和Parameter.getName()方法)和字节码层面(使用新的javac编译器以及-parameters参数)提供支持。
package com.javacodegeeks.java8.parameter.names; import java.lang.reflect.Method; import java.lang.reflect.Parameter; public class ParameterNames { public static void main(String[] args) throws Exception { Method method = ParameterNames.class.getMethod( "main", String[].class ); for( final Parameter parameter: method.getParameters() ) { System.out.println( "Parameter: " + parameter.getName() ); } } }
在Java 8中这个特性是默认关闭的,因此如果不带-parameters参数编译上述代码并运行,则会输出如下结果:
Parameter: arg0
如果带-parameters参数,则会输出如下结果(正确的结果):
Parameter: args
如果你使用Maven进行项目管理,则可以在maven-compiler-plugin编译器的配置项中配置-parameters参数:
<plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.1</version> <configuration> <compilerArgument>-parameters</compilerArgument> <source>1.8</source> <target>1.8</target> </configuration> </plugin>
Java 8增加了很多新的工具类(date/time类),并扩展了现存的工具类,以支持现代的并发编程、函数式编程等。
Java应用中最常见的bug就是。在Java 8之前,引入了Optionals类来解决NullPointerException,从而避免源码被各种null检查污染,以便开发者写出更加整洁的代码。Java 8也将Optional加入了官方库。
Optional仅仅是一个容易:存放T类型的值或者null。它提供了一些有用的接口来避免显式的null检查,可以参考了解更多细节。
接下来看一点使用Optional的例子:可能为空的值或者某个类型的值:
Optional< String > fullName = Optional.ofNullable( null ); System.out.println( "Full Name is set? " + fullName.isPresent() ); System.out.println( "Full Name: " + fullName.orElseGet( () -> "[none]" ) ); System.out.println( fullName.map( s -> "Hey " + s + "!" ).orElse( "Hey Stranger!" ) );
如果Optional实例持有一个非空值,则isPresent()方法返回true,否则返回false;orElseGet()方法,Optional实例持有null,则可以接受一个lambda表达式生成的默认值;map()方法可以将现有的Opetional实例的值转换成新的值;orElse()方法与orElseGet()方法类似,但是在持有null的时候返回传入的默认值。
上述代码的输出结果如下:
Full Name is set? false Full Name: [none] Hey Stranger!
再看下另一个简单的例子:
Optional< String > firstName = Optional.of( "Tom" ); System.out.println( "First Name is set? " + firstName.isPresent() ); System.out.println( "First Name: " + firstName.orElseGet( () -> "[none]" ) ); System.out.println( firstName.map( s -> "Hey " + s + "!" ).orElse( "Hey Stranger!" ) ); System.out.println();
这个例子的输出是:
First Name is set? true First Name: Tom Hey Tom!
如果想了解更多的细节,请参考。
新增的(java.util.stream)将生成环境的函数式编程引入了Java库中。这是目前为止最大的一次对Java库的完善,以便开发者能够写出更加有效、更加简洁和紧凑的代码。
Steam API极大得简化了集合操作(后面我们会看到不止是集合),首先看下这个叫Task的类:
public class Streams { private enum Status { OPEN, CLOSED }; private static final class Task { private final Status status; private final Integer points; Task( final Status status, final Integer points ) { this.status = status; this.points = points; } public Integer getPoints() { return points; } public Status getStatus() { return status; } @Override public String toString() { return String.format( "[%s, %d]", status, points ); } } }
Task类有一个分数(或伪复杂度)的概念,另外还有两种状态:OPEN或者CLOSED。现在假设有一个task集合:
final Collection< Task > tasks = Arrays.asList( new Task( Status.OPEN, 5 ), new Task( Status.OPEN, 13 ), new Task( Status.CLOSED, 8 ) );
首先看一个问题:在这个task集合中一共有多少个OPEN状态的点?在Java 8之前,要解决这个问题,则需要使用foreach循环遍历task集合;但是在Java 8中可以利用steams解决:包括一系列元素的列表,并且支持顺序和并行处理。
// Calculate total points of all active tasks using sum() final long totalPointsOfOpenTasks = tasks .stream() .filter( task -> task.getStatus() == Status.OPEN ) .mapToInt( Task::getPoints ) .sum(); System.out.println( "Total points: " + totalPointsOfOpenTasks );
运行这个方法的控制台输出是:
Total points: 18
这里有很多知识点值得说。首先,tasks集合被转换成steam表示;其次,在steam上的filter操作会过滤掉所有CLOSED的task;第三,mapToInt操作基于每个task实例的Task::getPoints方法将task流转换成Integer集合;最后,通过sum方法计算总和,得出最后的结果。
在学习下一个例子之前,还需要记住一些steams()的知识点。Steam之上的操作可分为中间操作和晚期操作。
中间操作会返回一个新的steam——执行一个中间操作(例如filter)并不会执行实际的过滤操作,而是创建一个新的steam,并将原steam中符合条件的元素放入新创建的steam。
晚期操作(例如forEach或者sum),会遍历steam并得出结果或者附带结果;在执行晚期操作之后,steam处理线已经处理完毕,就不能使用了。在几乎所有情况下,晚期操作都是立刻对steam进行遍历。
steam的另一个价值是创造性地支持并行处理(parallel processing)。对于上述的tasks集合,我们可以用下面的代码计算所有任务的点数之和:
// Calculate total points of all tasks final double totalPoints = tasks .stream() .parallel() .map( task -> task.getPoints() ) // or map( Task::getPoints ) .reduce( 0, Integer::sum ); System.out.println( "Total points (all tasks): " + totalPoints );
这里我们使用parallel方法并行处理所有的task,并使用reduce方法计算最终的结果。控制台输出如下:
Total points(all tasks): 26.0
对于一个集合,经常需要根据某些条件对其中的元素分组。利用steam提供的API可以很快完成这类任务,代码如下:
// Group tasks by their status final Map< Status, List< Task > > map = tasks .stream() .collect( Collectors.groupingBy( Task::getStatus ) ); System.out.println( map );
控制台的输出如下:
{CLOSED=[[CLOSED, 8]], OPEN=[[OPEN, 5], [OPEN, 13]]}
最后一个关于tasks集合的例子问题是:如何计算集合中每个任务的点数在集合中所占的比重,具体处理的代码如下:
// Calculate the weight of each tasks (as percent of total points) final Collection< String > result = tasks .stream() // Stream< String > .mapToInt( Task::getPoints ) // IntStream .asLongStream() // LongStream .mapToDouble( points -> points / totalPoints ) // DoubleStream .boxed() // Stream< Double > .mapToLong( weigth -> ( long )( weigth * 100 ) ) // LongStream .mapToObj( percentage -> percentage + "%" ) // Stream< String> .collect( Collectors.toList() ); // List< String > System.out.println( result );
控制台输出结果如下:
[19%, 50%, 30%]
最后,正如之前所说,Steam API不仅可以作用于Java集合,传统的IO操作(从文件或者网络一行一行得读取数据)可以受益于steam处理,这里有一个小例子:
final Path path = new File( filename ).toPath(); try( Stream< String > lines = Files.lines( path, StandardCharsets.UTF_8 ) ) { lines.onClose( () -> System.out.println("Done!") ).forEach( System.out::println ); }
Stream的方法onClose 返回一个等价的有额外句柄的Stream,当Stream的close()方法被调用的时候这个句柄会被执行。Stream API、Lambda表达式还有接口默认方法和静态方法支持的方法引用,是Java 8对软件开发的现代范式的响应。
Java 8引入了来改进时间、日期的处理。时间和日期的管理一直是最令Java开发者痛苦的问题。java.util.Date和后来的java.util.Calendar一直没有解决这个问题(甚至令开发者更加迷茫)。
因为上面这些原因,诞生了第三方库, 可以替代Java的时间管理API。Java 8中新的时间和日期管理API深受Joda-Time影响,并吸收了很多Joda-Time的精华。新的java.time包包含了所有关于日期、时间、 时区、Instant(跟日期类似但是精确到纳秒)、duration(持续时间)和时钟操作的类。新设计的API认真考虑了这些类的不变性(从 java.util.Calendar吸取的教训),如果某个实例需要修改,则返回一个新的对象。
我们接下来看看java.time包中的关键类和各自的使用例子。首先,Clock类使用时区来返回当前的纳秒时间和日期。Clock可以替代System.currentTimeMillis()和TimeZone.getDefault()。
// Get the system clock as UTC offset final Clock clock = Clock.systemUTC(); System.out.println( clock.instant() ); System.out.println( clock.millis() );
这个例子的输出结果是:
2014-04-12T15:19:29.282Z 1397315969360
第二,关注下LocalDate和LocalTime类。LocalDate仅仅包含ISO-8601日历系统中的日期部分;LocalTime则仅仅包含该日历系统中的时间部分。这两个类的对象都可以使用Clock对象构建得到。
// Get the local date and local time final LocalDate date = LocalDate.now(); final LocalDate dateFromClock = LocalDate.now( clock ); System.out.println( date ); System.out.println( dateFromClock ); // Get the local date and local time final LocalTime time = LocalTime.now(); final LocalTime timeFromClock = LocalTime.now( clock ); System.out.println( time ); System.out.println( timeFromClock );
上述例子的输出结果如下:
2014-04-12 2014-04-12 11:25:54.568 15:25:54.568
LocalDateTime类包含了LocalDate和LocalTime的信息,但是不包含ISO-8601日历系统中的时区信息。这里有一些:
// Get the local date/time final LocalDateTime datetime = LocalDateTime.now(); final LocalDateTime datetimeFromClock = LocalDateTime.now( clock ); System.out.println( datetime ); System.out.println( datetimeFromClock );
上述这个例子的输出结果如下:
2014-04-12T11:37:52.309 2014-04-12T15:37:52.309
如果你需要特定时区的data/time信息,则可以使用ZoneDateTime,它保存有ISO-8601日期系统的日期和时间,而且有时区信息。下面是一些使用不同时区的例子:
// Get the zoned date/time final ZonedDateTime zonedDatetime = ZonedDateTime.now(); final ZonedDateTime zonedDatetimeFromClock = ZonedDateTime.now( clock ); final ZonedDateTime zonedDatetimeFromZone = ZonedDateTime.now( ZoneId.of( "America/Los_Angeles" ) ); System.out.println( zonedDatetime ); System.out.println( zonedDatetimeFromClock ); System.out.println( zonedDatetimeFromZone );
这个例子的输出结果是:
2014-04-12T11:47:01.017-04:00[America/New_York] 2014-04-12T15:47:01.017Z 2014-04-12T08:47:01.017-07:00[America/Los_Angeles]
最后看下Duration类,它持有的时间精确到秒和纳秒。这使得我们可以很容易得计算两个日期之间的不同,例子代码如下:
// Get duration between two dates final LocalDateTime from = LocalDateTime.of( 2014, Month.APRIL, 16, 0, 0, 0 ); final LocalDateTime to = LocalDateTime.of( 2015, Month.APRIL, 16, 23, 59, 59 ); final Duration duration = Duration.between( from, to ); System.out.println( "Duration in days: " + duration.toDays() ); System.out.println( "Duration in hours: " + duration.toHours() );
这个例子用于计算2014年4月16日和2015年4月16日之间的天数和小时数,输出结果如下:
Duration in days: 365 Duration in hours: 8783
对于Java 8的新日期时间的总体印象还是比较积极的,一部分是因为Joda-Time的积极影响,另一部分是因为官方终于听取了开发人员的需求。如果希望了解更多细节,可以参考。
Java 8提供了新的,使得我们可以在JVM上开发和运行JS应用。Nashorn JavaScript引擎是javax.script.ScriptEngine的另一个实现版本,这类Script引擎遵循相同的规则,允许Java和JavaScript交互使用,例子代码如下:
ScriptEngineManager manager = new ScriptEngineManager(); ScriptEngine engine = manager.getEngineByName( "JavaScript" ); System.out.println( engine.getClass().getName() ); System.out.println( "Result:" + engine.;
这个代码的输出结果如下:
jdk.nashorn.api.scripting.NashornScriptEngine Result: 2
已经被加入到Java 8官方库中,这样不需要使用第三方库就可以进行Base64编码,例子代码如下:
package com.javacodegeeks.java8.base64; import java.nio.charset.StandardCharsets; import java.util.Base64; public class Base64s { public static void main(String[] args) { final String text = "Base64 finally in Java 8!"; final String encoded = Base64 .getEncoder() .encodeToString( text.getBytes( StandardCharsets.UTF_8 ) ); System.out.println( encoded ); final String decoded = new String( Base64.getDecoder().decode( encoded ), StandardCharsets.UTF_8 ); System.out.println( decoded ); } }
这个例子的输出结果如下:
QmFzZTY0IGZpbmFsbHkgaW4gSmF2YSA4IQ== Base64 finally in Java 8!
新的Base64API也支持URL和MINE的编码解码。
(Base64.getUrlEncoder() / Base64.getUrlDecoder(), Base64.getMimeEncoder() / Base64.getMimeDecoder())。
Java8版本新增了很多新的方法,用于支持并行数组处理。最重要的方法是parallelSort(),可以显著加快多核机器上的数组排序。下面的例子论证了parallexXxx系列的方法:
package com.javacodegeeks.java8.parallel.arrays; import java.util.Arrays; import java.util.concurrent.ThreadLocalRandom; public class ParallelArrays { public static void main( String[] args ) { long[] arrayOfLong = new long [ 20000 ]; Arrays.parallelSetAll( arrayOfLong, index -> ThreadLocalRandom.current().nextInt( 1000000 ) ); Arrays.stream( arrayOfLong ).limit( 10 ).forEach( i -> System.out.print( i + " " ) ); System.out.println(); Arrays.parallelSort( arrayOfLong ); Arrays.stream( arrayOfLong ).limit( 10 ).forEach( i -> System.out.print( i + " " ) ); System.out.println(); } }
上述这些代码使用parallelSetAll()方法生成20000个随机数,然后使用parallelSort()方法进行排序。这个程序会输出乱序数组和排序数组的前10个元素。上述例子的代码输出的结果是:
Unsorted: 591217 891976 443951 424479 766825 351964 242997 642839 119108 552378 Sorted: 39 220 263 268 325 607 655 678 723 793
基于新增的lambda表达式和steam特性,为Java 8中为java.util.concurrent.ConcurrentHashMap类添加了新的方法来支持聚焦操作;另外,也为java.util.concurrentForkJoinPool类添加了新的方法来支持通用线程池操作(更多内容可以参考)。
Java 8还添加了新的java.util.concurrent.locks.StampedLock类,用于支持基于容量的锁——该锁有三个模型用于支持读写操作(可以把这个锁当做是java.util.concurrent.locks.ReadWriteLock的替代者)。
在java.util.concurrent.atomic包中也新增了不少工具类,列举如下:
Java 8提供了一些新的命令行工具,这部分会讲解一些对开发者最有用的工具。
jjs是一个基于标准Nashorn引擎的命令行工具,可以接受js源码并执行。例如,我们写一个func.js文件,内容如下:
function f() { return 1; }; print( f() + 1 );
可以在命令行中执行这个命令:jjs func.js,控制台输出结果是:
2
如果需要了解细节,可以参考。
jdeps是一个相当棒的命令行工具,它可以展示包层级和类层级的Java类依赖关系,它以.class文件、目录或者Jar文件为输入,然后会把依赖关系输出到控制台。
我们可以利用jedps分析下,为了让结果少一点,仅仅分析一个JAR文件:org.springframework.core-3.0.5.RELEASE.jar。
jdeps org.springframework.core-3.0.5.RELEASE.jar
这个命令会输出很多结果,我们仅看下其中的一部分:依赖关系按照包分组,如果在classpath上找不到依赖,则显示”not found”.
org.springframework.core-3.0.5.RELEASE.jar -> C:/Program Files/Java/jdk1.8.0/jre/lib/rt.jar org.springframework.core (org.springframework.core-3.0.5.RELEASE.jar) -> java.io -> java.lang -> java.lang.annotation -> java.lang.ref -> java.lang.reflect -> java.util -> java.util.concurrent -> org.apache.commons.logging not found -> org.springframework.asm not found -> org.springframework.asm.commons not found org.springframework.core.annotation (org.springframework.core-3.0.5.RELEASE.jar) -> java.lang -> java.lang.annotation -> java.lang.reflect -> java.util
更多的细节可以参考。
使用()代替持久代(PermGen space)。在JVM参数方面,使用-XX:MetaSpaceSize和-XX:MaxMetaspaceSize代替原来的-XX:PermSize和-XX:MaxPermSize。
通过为开发者提供很多能够提高生产力的特性,Java 8使得Java平台前进了一大步。现在还不太适合将Java 8应用在生产系统中,但是在之后的几个月中Java 8的应用率一定会逐步提高。作为开发者,现在应该学习一些Java 8的知识,为升级做好准备。
关于Spring:对于企业级开发,我们也应该关注Spring社区对Java 8的支持,可以参考这篇文章——
By
两大Java IDE神器 MyEclipse vs IntelliJ IDEA 限时打折促销中,助力Java开发之路:
本站文章除注明转载外,均为本站原创或翻译。欢迎任何形式的转载,但请务必注明出处、不得修改原文相关链接,如果存在内容上的异议请邮件反馈至chenjj@capbkgr.cn